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Outline 

 

1.   Review two strong-laws that rely on measure 0 as the sense of  
a negligible set: where the probability-1 law fails. 

 

2.   A topological sense of a negligible set – meager (or 1st category) sets. 
 

3.   Oxtoby’s (1957, 1980) results – where the two senses of negligible conflict. 
 

4.   A generalization of Oxtoby’s (1957) result. 
 

5.   Some concluding thoughts on where these two formal perspectives on  
negligible sets do and do not play well together. 
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1.  Two philosophically significant, strong-laws that rely on measure 0 as 
the sense of a negligible set: where the law fails. [See, e.g. Schervish (1995).]  

 
• The strong law of large numbers for independent, identically distributed (iid) 

Bernoulli trials – connecting chance with limiting relative frequency.  
Let X be a Bernoulli variable sample space {0, 1}, with P(X = 1) = p, for 0 ≤ p ≤ 1.   

Let Xi (i = 1, 2, …) be a denumerable sequence of Bernoulli variables,  
with a common parameter P(Xi = 1) = p and where trials are independent. 

Independence is expressed as follows.   
For each n = 1, 2, …, let Sn = 𝑿𝒏𝒏

𝒊$𝟏 . 
Then P(X1 = x1, …, Xn = xn)  = 	𝒑𝑺𝒏×(𝟏 − 𝒑)(𝒏-𝑺𝒏).  

The weak-law of large numbers for iid Bernoulli trials:  
For each e > 0,   limn®¥ P(|Sn/n – p| > e)  =  0.   

The strong-law of large numbers for iid Bernoulli trials:  
P(limn®¥ Sn/n  =  p)  =  1.   

If P is countably additive, the strong-law version entails the weak-law version. 
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Let < X, B, P > be the countably additive measure space generated by all finite 

sequences of repeated, probabilistically independent [iid] flips of a “fair” coin.   

 
Let 1 denote a “Heads” outcome and 0 a “Tails” outcome for each flip.   
 
Then a point x of X is a denumerable sequence of 0s and 1s,  

x = <x1, x2, … >, with each xn Î {0, 1} for n = 1, 2, …   

and where Xn(x) = xn designates the outcome of the nth flip of the fair coin.    

 
B is the Borel s-algebra generated by rectangular events, those determined by 

specifying values for finitely many coordinates in W.   

 
P is the countably additive iid product fair-coin probability that is determined by  

    P(Xn = 1) = 1/2  (n = 1, 2, …)  

and where each finite sequence of length n is equally probable,  

    P(X1 = x1, …, Xn = xn)  = 2-n.  
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Let L½ be the set of infinite sequences of 0s and 1s with limiting relative frequency ½  

for each of the two digits: a set belonging to B.   

Specifically,  let Sn = 𝑿𝒏𝒏
𝒊$𝟏 .     Then L½ = {x: limn®¥ Sn/n = 1/2}.   

• The strong-law of large numbers asserts that P(L½) = 1.   

 

What is excused with the strong law, what is assigned probability 0,  

is the null set N (= [L½]c) consisting of  

the complement to L½ among all denumerable sequences of 0s and 1s.  

 

• It is an old story within Philosophy that the Strong Law of Large Numbers offers 
a probabilistic link between chance and limiting relative frequency. 
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• The Blackwell-Dubins (1962) strong-law for consensus among Bayesian 
investigators with increasing shared evidence. 
 

Let <X, B> be a measurable Borel product-space as follows.  

Consider a sequence of sets Xi (i = 1, …) each with an associated s-field Bi.   

The Cartesian product  X = X1 ´ … of  sequences (x1, … ) = x Î X, for xi Î Xi.  

That is, each xi is an atom of its algebra Bi.   

B be the s-field generated by the measurable rectangles.  

 

Definition:  A measurable rectangle (A1 x … ) = A Î B  is one where  

Ai Î Bi and Ai = Xi for all but finitely many i.   
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Blackwell and Dubins (1962) consider the idealized setting where: 

 

Two Bayesian agents consider a common product space and share  

evidence of the growing sequence of histories <x1, x2, …, xk>.  

 
Each has her/his own countably additive personal probability, with  

regular conditional probabilities for the future given the past. 

 
• Two measure spaces <X, B, P1> and <X, B, P2>.   

 

• Assume P1 and P2 agree on which events in B have probability 0.  
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In order to index how much these two are in probabilistic 

disagreement, use the total-variation distance. 

 

Define  r( P1( × | X1=x1,  …, Xn=xn), P2( × | X1=x1,  …, Xn=xn) )  =  

supEÎB  | P1(E | X1=x1,  …, Xn=xn)  –  P2(E | X1=x1,  …, Xn=xn) | . 

 

The index r focuses on the greatest differences between the two agents’ 

conditional probabilities.   

 

The B-D (1962) strong-law about asymptotic consensus:  For i = 1, 2 

Pi [ limn®¥ r( P1( × | X1=x1, …, Xn=xn), P2( × | X1=x1, …, Xn=xn) ) = 0 ] = 1. 

 
• Almost surely, increasing shared evidence creates consensus. 
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2.  A topological sense of a negligible set – meager (or 1st category) sets. 

 
A topology T for a set X is a class of open subsets of X that  

includes X and Æ   

is closed under arbitrary unions and finite intersections. 

The pair X = (X, T) is called a topological space. 

 
A subset Y Í X  is  dense  (in X) provided that,  

Y has non-empty intersection with each (non-empty) open set in T. 

 
A subset Y Í X  is  nowhere dense  (in X) provided that  

for each (non-empty) open set O, there is a (non-empty) open O’ Í  O  

where      Y Ç O’ = Æ. 



A conflict between measure and category – Pitt Phi. Sci. Center Workshop on Formal Representations of Ignorance, March 2017 10 

Topologically negligble (meager) and large (residual) sets 

 

A set M is meager (or 1st Category)   iff  

M is the denumerable union of nowhere dense sets. 

 

A set R is residual  (or comeager)    iff     R = Mc. 

R is the complement of a meager set M. 
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3. Oxtoby’s (1957, 1980) results – where the two senses of negligible conflict. 
 

There are some evident similarities between  

the measure theoretic sense of a negligible set – a P-null set  

and 

the topological sense of a negligible set – a meager set. 

  

A trivial example:   

If X is uncountable with P({x}) = 0 for each x Î X, and  

the topology T on X has makes each point nowhere dense in X, 

then a denumerable set of points is negligible in both senses simultaneously.  
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More significantly (Oxtoby, 1980, T. 19.4) establishes an important duality.   

Relative to Lebesgue measure and Euclidean topology on the real line –  

 
Duality Theorem: Assume the Continuum Hypothesis.   

Let j be a proposition involving only the concepts of: 

measure 0 set, meager set, and pure set theory.   

Let j* be the proposition that results by interchanging  

‘measure 0’ and ‘meager’ wherever these appear in j.  

Then,      j    if and only if     j*.  

 
 
However, this duality does not establish the same sets are judged negligible 
in both perspectives. 
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• Old News: The real line can be decomposed into two complementary 

sets N and M where N has Lebesgue measure 0, and M is meager.   

 
Existence of a radically opposed decomposition of negligible sets is 

captured, more generally, by Oxtoby’s [1980, p. 64] Theorem 16.5. 

 
If the measure space < X , B , P>, satisfies 

•  P is nonatomic, 

•  X  has a metrizable topology T  with a base whose cardinality is less  

than the first weakly inaccessible, 

•  and, the s-field B  includes the Borel sets of T , 

then X can be partitioned into a set of P-measure 0 and a meager set. 

 
But are any of these problematic decompositions of practical significance? 
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Return to the setting of the Law of Large Numbers. 
Let Xi (i = 1, 2, …) be a denumerable sequence of Bernoulli {0,1} variables.  
Let < X, B, P> be the measure space with B the Borel s-algebra generated by all  

finite sequences of flips, and P is the iid “fair coin” measure on sequences. 
 
Topologize this space using the product of the discrete topology on each Xi,   

Ti(Xi) = {Æ, {0}, {1}, {0,1} }   and then   T¥ = T1 ´ T2 ´ … . 

Topology  T¥  is (homeomorphic to) the Cantor Space.  
 
Let L½ be the set of binary sequences with limiting relative frequency ½ for each of  

the two digits: a set belonging to B.   
Specifically, let Sn = 𝑿𝒏𝒏

𝒊$𝟏  and then L½ = {x: limn®¥ Sn/n = 1/2}.  
  

• The strong-law of large numbers asserts that P(L½) = 1.   
 

• BUT (Oxtoby, 1957) the set L1/2 is a meager set in the topology T¥ (!!) 
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4.   A generalization of Oxtoby’s (1957) result. 
In our (2017) we show (Theorem A1) that the tension over rival senses of negligble 

generalizes in a dramatic way to sequences of random variables relative to a large 

class of infinite product topologies.  A Corollary applies to Bernoulli sequences.  

 
Let c be a set with topology T and Borel s-field, B, i.e., the s-field generated 

by the open sets in T.  Let c¥ be the countable product set with the product 

topology T¥ and product s-field, B¥, which is also the Borel s-field for the 

product topology (because it is a countable product).   
 
Let <W, A, P> be a probability space.  

Relate these two spaces with a sequence of random quantities 

{𝑿𝒏}𝒏$𝟏0 ,	where, for each n,    Xn: W ® c    is (A and B) measurable.   

 
Define  X: W ® c¥ by X(w) = <X1(w), X2(w), …>.   
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Let SX = X(W) be the image of X, i.e., the set of sample paths of X.   

We denote elements of SX as y = <y1, y2, …>.    

As SX is a subset of c¥ we endow SX with the subspace topology.  

 

We require a degree of logical independence between the Xn’s. 

In particular, we need the sequence {𝑿𝒏}𝒏$𝟏0 	to be capable of moving to 

various places in c¥ regardless of where it has been so far.    

 

We express this as Condition 1, below, in terms of the interior of a set. 

 

• The interior of a set B is the union of all open subsets of B.  

 



A conflict between measure and category – Pitt Phi. Sci. Center Workshop on Formal Representations of Ignorance, March 2017 17 

Condition 1: For each j, let Bj Î B  be a set with nonempty interior 𝑩𝒋𝒐.  

Require that, for each n, for each x = <x1, …, xn> Î <X1, …, Xn>(W),  

and for each j, there exists a positive integer c(n, j, x) such that  

<X1, …, Xn, Xn+c(n, j, x)>-1({x} ´ 𝑩𝒋𝒐) ¹ Æ.   

 

Condition 1 asserts that, no matter where the sequence of random 

variables has been up to time n, there is a finite time, c(n, j, x), after 

which it is possible that the sequence reaches the set 𝑩𝒋𝒐.   
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For each sample path y Î SX, define t0(y) = 0, and for j > 0, define 

 
                      ì𝒎𝒊𝒏	{𝒏 > 𝝉𝒋-𝟏(𝒚):	𝒚𝒏 ∈ 	𝑩𝒋},	 if the minimum is finite, 
 tj(y)  =       í 
             î   ¥ 	             if  not. 
 

Let    B = {y Î SX : 𝝉𝒋(𝒚) < ¥ for all j},  

And let   A  =  SX \ B  =  Bc Ç SX. 

 
• A is the set of sample paths each of which fails to visit at least one 

of the Bj sets, in the order specified. 

Aside: Because we do not require that the sets Bj are nested, it is possible that the 
sequence reaches Bk for all k > j without ever reaching Bj.   
 
• Theorem:  A is a meager set.  (!!) 
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The following Corollary generalizes Oxtoby’s (1957) result that the Strong 

Law for iid Bernoulli variables provides a measure 1 set that is meager. 

 
As before, let Xi = {0,1}, i = 1, 2, …, be a sequence of Bernoulli {0, 1} variables. 

Let < X, B, P> be the measure space with B the Borel s-algebra generated by all  

finite sequences of flips, and P is the iid “fair coin” measure on sequences. 

 

Topologize the measurable space < X, B > using the product of the discrete topology 

on each Xi,   Ti(Xi) = {Æ, {0}, {1}, {0,1} }   and then   T¥(X) = T1 ´ T2 ´ … . 

Let L½ be the set of binary sequences with limiting relative frequency ½ for each of  

the two digits: a set belonging to B.   

• The strong-law of large numbers asserts that P(L½) = 1.   

• BUT (Oxtoby, 1957) the set L1/2 is a meager set in the topology T¥  
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Now, consider the set of sequences:   

OM = {x: the observed relative frequency of 1 oscillates maximally} 

Specifically, for each x = < x1, x2, … > Î OM,  

lim.inf. 𝒙𝒏
𝒋$𝟏 j/n  = 0  and  lim sup. 𝒙𝒏

𝒋$𝟏 j/n  =  1. 

OM is a B-measurable set. 

 

The complement to OM,  OMc = L<0,1>, is the measurable set of binary 

sequences whose observed relative frequencies fail to oscillate maximally. 

L<0,1> = {x: lim.inf. 𝒙𝒏
𝒋$𝟏 j/n  > 0  or  lim sup. 𝒙𝒏

𝒋$𝟏 j/n  <  1}. 

 

• Corollary:  L<0,1> is a meager set in T¥.			See also Calude and Zamfirescu (1999). 

Challenge: What stochastic process P treats L<0,1> as a P-null event?  
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The conflict between the two senses of negligible runs deeper still. 
Build a hierarchy of events by considering the sojourn times for relative frequencies, 
and then relative frequencies of frequencies, etc. . 
 
Let the sequence of Bernoulli outcomes x = <x1, x2, … > count as the 
sequence of 0th tier events – the sequence of 0s and 1s. 
 
•  Define the 1st tier event    𝑭[.𝟐,.𝟒]𝟏   as occurring whenever  
the relative frequency of 1 in the sequence x falls in the interval [.2, .4].  
 
Even though OM is a residual set of sequences, the subset of OM for which 
the relative frequency of 𝑭[.𝟐,.𝟒]𝟏  fails to oscillate maximally is a meager set. 
 
2nd tier events are defined by intervals of frequencies of 1st tier events. 
 
Since the countable union of meager sets is meager: 

• The set of sequences that have relative frequencies of events that 

oscillate maximally at each countable tier is residual! 
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5.  Some concluding thoughts on where the two formal perspectives on  

negligible sets do, and do not play well together. 

 

Q: What roles can these two different senses of negligible play together? 

 

 

Tentative Answer:   

Use a topological sense of “negligible” for sets that are not within the 

domain of the measure – where probability does not apply. 
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Example:   

Regarding Blackwell-Dubins asymptotic r-consensus among Bayesian 

agents who share evidence,  

use topology to investigate the size of the community for which  

the shared evidence creates asymptotic merging. 

 
Or, as convergence is a topological notion,  

use a different topology than the one induced by sup-norm, r,  

to define asymptotic merging.  

 

But do not let the measure and the topology compete over the same  

family of sets as to which are negligible. 

That way lies conflict!   
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